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Abstract. Much effort has been devoted to research on intrusion detection in recent years because intrusion 
strategies and technologies are constantly and quickly evolving. As an innovative solution based on visuali-
zation, MOVICAB-IDS was previously proposed, conceived as a hybrid-intelligent Intrusion Detection Sys-
tem. It was designed to analyse continuous network data at a packet level and is extended in present paper for 
the analysis of flow-based traffic data. By incorporating clustering techniques to the original proposal, net-
work flows are investigated trying to identify different types of attacks. The analysed real-life data (the well-
known dataset from the University of Twente) come from a honeypot directly connected to the Internet (thus 
ensuring attack-exposure) and is analysed by means of clustering and neural techniques, individually and in 
conjunction. Promising results are obtained, proving the validity of the proposed extension for the analysis of 
network flow data. 
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1 Introduction 
Intrusion Detection (ID) is a field that focuses on the identification of successful or ongoing attacks, in both networks and 
computers. The huge amount of previous work focused on network-based ID can be categorized by different criteria. One of 
them is the nature of the analysed data and, according to that, there are two categories based on the source of network data to 
be analysed: packets or flows. Some network Intrusion Detection Systems (IDSs) analyse every IP packet travelling along a 
network and then extract information from the different fields in the packet (headers mainly and payload sometimes). On the 
other hand, some IDSs deal with flows, being defined as “a set of IP packets passing on an observation point in the network 
during a certain time interval and having a set of common properties” [1]. In flow-based IDSs, rather than looking at all 
packets in a network, these tools look at aggregated information of related packets in the form of a flow, so the amount of 
data to be analysed is summarized and then reduced. With the rise of network speed and number and types of attacks, exist-
ing IDSs face challenges of capturing every single packet. Hence, a flow-based IDS has an overall lower amount of data to 
be processed, therefore it is the logical choice for high speed networks [2, 3]. 

MObile VIsualisation Connectionist Agent-Based IDS (MOVICAB-IDS) was proposed [4] as a novel IDS comprising a 
Hybrid Artificial Intelligent System. Its main goal was to apply an unsupervised neural projection model to extract traffic 
dataset projections and to display them through a mobile visualisation interface. One of its main drawbacks was its depend-
ence on human processing as MOVICAB-IDS could not automatically raise the alarm when detecting an intrusion. Human 
users could fail to detect an intrusion even when displayed as an anomalous one, when visually processing big amounts of 
data [5]. Additionally, MOVICAB-IDS did not provide network administrators with much information to distinguish be-
tween the different kinds of attacks that a network may face. It is a desirable property of an IDS not only to detect an intru-
sion but also to identify the kind of intrusion that is detected in order to optimize the countermeasures to be applied. Taking 
into account the above described features, MOVICAB-IDS is being extended by the application of clustering techniques in 
conjunction with neural visualization, to overcome some of its limitations. Results on different combinations of such tech-
niques have been obtained and are shown in section 4. Based on successful results obtained by upgrading MOVICAB-IDS 
with clustering techniques to detect different attacks on packet-based data [6], [7], present work focuses on flow-based data. 
Hence, present work proposes the combination of MOVICAB-IDS and different clustering techniques to analyse flow-based 
segments containing attack situations and released by the University of Twente [8]. The experimental study in present paper 
tries to know whether clustering could be more informative applied over the projected data rather than the original flow data 
captured from the network, not only to identify intrusions but also to differentiate the different kinds of malicious situations.   

The remaining sections of this study are structured as follows: section 2 describes previous related work, while section 3 
introduces the applied visualization and clustering techniques. Experiments and results are presented in section 4, and the 
conclusions of this study as well as future work are discussed in section 5. 

2 Related Work 
As previously stated, present work proposes extending the initial conception of MOVICAB-IDS to incorporate clustering 
techniques for flow analysis. This IDS was initially proposed [4] as a tool combining features extracted from packet headers 
to depict each simple packet by using neural unsupervised methods based on Exploratory Projection Pursuit (EPP) [9]. Then, 

mailto:ahcosio@ubu.es


its architecture was improved as a Hybrid Intelligent System based on a Multi-agent System [5], that later on was bounded 
for real-time analysis [10]. The MOVICAB-IDS task organisation comprised the six tasks depicted in Fig. 1. 

Fig. 1. Original MOVICAB-IDS task overview. 

 
As it was already proposed for packet-based intrusion detection [6],  the Data Analysis task is now performed by neural 

projection and clustering techniques, in order to obtain an enhanced visualization while at the same time, enabling automatic 
response. At the same time, for flow analysis, the three first tasks are adapted, according to details described in section 4. 

Apart from previous work by paper authors, clustering has been previously applied to intrusion detection: [11] proposes 
an alert aggregation method, clustering similar alerts into a hyper alert based on category and feature similarity. From a 
similar perspective, [12] proposes a two-stage clustering algorithm to analyse the spatial and temporal relation of the net-
work intrusion behaviours’ alert sequence. [13] describes a classification of network traces through an improved nearest 
neighbour method, while [14] applies data mining algorithms for the same purpose and the results of preformatted data are 
visually displayed. Finally, [15] discusses on how the clustering algorithm is applied to intrusion detection and analyses an 
intrusion detection algorithm based on clustering problems. Differentiating from previous work, the approach proposed in 
present paper applies clustering to previously projected data (processed by neural models). The combination of clustering 
and neural visualization techniques have been previously [6] applied to the identification of different anomalous situations, 
but only to those related to the SNMP network protocol (network scans, MIB transfers and community string searches) and 
analysing packet information. In present paper, this combination of techniques is applied to network flows. 

3 Proposed Clustering Extension 
To better detect intrusions, an upgrade of MOVICAB-IDS, combining projection and clustering results is being proposed. 
The techniques combined within MOVICAB-IDS are described in this section. 

3.1 Cooperative Maximum Likelihood Hebbian Learning 
One neural implementation of EPP [9], applied under the frame of MOVICAB-IDS for the data analysis task, is Maximum 
Likelihood Hebbian Learning (MLHL) [16]. It identifies interestingness by maximising the probability of the residuals under 
specific probability density functions which are non-Gaussian. 

An extended version of this model is the Cooperative Maximum Likelihood Hebbian Learning (CMLHL) [17] model. 
CMLHL is based on MLHL [16], adding lateral connections [17], which have been derived from the Rectified Gaussian 
Distribution [18]. The resultant net can find the independent factors of a data set but does so in a way that captures some 
type of global ordering in the data set. 

Considering an N-dimensional input vector ( x ), and an M-dimensional output vector ( y ), with ijW being the weight 

(linking input j  to output i , ranging between the dimensionality of input and output vectors, respectively), then CMLHL 
can be expressed [17] as:  
1. Feed-forward step: 
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Where: η  is the learning rate, τ is the "strength" of the lateral connections, b  the bias parameter, and p a parameter 

related to the energy function [17]. A is a symmetric matrix used to modify the response to the data [17], whose values range 
from -1 to 1. The effect of this matrix is based on the relation between the distances separating the output neurons. 

3.2 Clustering 
Cluster analysis [19], [20] consist in the organization of a collection of data items or patterns (usually represented as a vector 
of measurements, or a point in a multidimensional space) into clusters based on similarity. Hence, patterns within a valid 
cluster are more similar to each other than they are to a pattern belonging to a different cluster. 

Pattern proximity is usually measured by a distance function defined on pairs of patterns. A variety of distance measures 
are in use in various communities [21], [22]. There are different approaches to data clustering [19], but given the high num-
ber and the strong diversity of the existent clustering methods, a representative technique for partitional as well as hierar-
chical clustering are applied in present study. 

In general terms, there are two main types of clustering techniques: hierarchical and partitional approaches. Hierarchical 
methods produce a nested series of partitions (illustrated on a dendrogram which is a tree diagram) based on a similarity for 
merging or splitting clusters, while partitional methods identify the partition that optimizes (usually locally) a clustering 
criterion. Hence, obtaining a hierarchy of clusters can provide more flexibility than other methods. A partition of the data 
can be obtained from a hierarchy by cutting the tree of clusters at certain level. 

Hierarchical methods generally fall into two types: 
1. Agglomerative: an agglomerative approach begins with each pattern in a distinct cluster, and successively joins clusters 

together until a stopping criterion is satisfied or until a single cluster is formed.  
2. Divisive: a divisive method begins with all patterns in a single cluster and performs splitting until a stopping criterion is met 

or every pattern is in a different cluster. This method is neither applied nor discussed in this paper. 
Partitional clustering aims to directly obtain a single partition of the data instead of a clustering structure, such as the 

dendrogram produced by a hierarchical technique. Many of these methods are based on the iterative optimization of a crite-
rion function that reflects the similarity between a new data and each one of the initial patterns selected for a specific itera-
tion. Partitional methods have advantages in applications involving large data sets for which the construction of a dendro-
gram is computationally prohibitive. The problem of these algorithms is the need of the number of desired output clusters. 
Exhaustive search over all the set of possible initial labelling for an optimum output is clearly computationally prohibitive. 
Therefore, in practice, the algorithm is typically run a number of times with different starting states, and the best configura-
tion obtained from all of the runs is used as the output clustering. Hence, we can meet different results depending on the 
initial labelling chosen (usually random). Additional techniques for the grouping operation include density-based [23], prob-
abilistic [24], graph-theoretic [25] and mixture-resolving clustering methods, but they are not used on this paper. 

In present study, one hierarchical (Agglomerative) and a partitional (k-means) clustering methods are applied for compar-
ison purposes. 

As similarity is fundamental to the definition of a cluster, a measure of the similarity is essential to most clustering meth-
ods and it must be carefully chosen. Present study applies well-known distance criteria used for examples whose features are 
all continuous when applying the k-means algorithm: 

• sqEuclidean: squared Euclidean distance. Each centroid is the mean of the points in that cluster. 
• Cityblock: sum of absolute differences. Each centroid is the component-wise median of the points in that cluster. 
• Cosine: one minus the cosine of the included angle between points (treated as vectors). Each centroid is the mean 

of the points in that cluster, after normalizing those points to unit Euclidean length. 
• Correlation: one minus the sample correlation between points (treated as sequences of values). Each centroid is the 

component-wise mean of the points in that cluster, after centering and normalizing those points to zero mean and 
unit standard deviation. 

In the case of agglomerative clustering, a variety of linking methods can be designed. In present study, the following ones 
are applied: 

• Single: shortest distance. 
• Complete: furthest distance. 
• Ward: inner squared distance (minimum variance algorithm), appropriate for Euclidean distances only. 
• Median: weighted center of mass distance (WPGMC: Weighted Pair Group Method with Centroid Averaging), ap-

propriate for Euclidean distances only. 



• Average: unweighted average distance (UPGMA: Unweighted Pair Group Method with Arithmetic Averaging). 
• Centroid: centroid distance (UPGMC: Unweighted Pair Group Method with Centroid Averaging), appropriate for 

Euclidean distances only. 
• Weighted: weighted average distance (WPGMA: Weighted Pair Group Method with Arithmetic Averaging). 

Additionally, clustering validation techniques have been applied in present study for the k-means algorithm. Such techniques 
evaluate the goodness of clustering results [26] by taking into account a certain criterion. The following criteria have been 
applied in present work, for comparison purposes: 

•  Calinski-Harabasz Index [27]: it evaluates the cluster validity based on the average between-and within-cluster 
sum of squares. Index measures separation based on the maximum distance between cluster centers, and 
measures compactness based on the sum of distances between objects and their cluster center.  

• Silhouette Index [28]: it validates the clustering performance based on the pairwise difference of between and 
within cluster distances. In addition, the optimal cluster number is determined by maximizing the value of this 
index.  

• Gap criterion [29]: it uses the output of any clustering algorithm, comparing the change in within-cluster dispersion 
with that expected under an appropriate reference null distribution. This index is especially useful on well-
separated clusters and when used with a uniform reference distribution in the principal component orientation.  

 

4  Experimental Study 
As previously stated, neural projection and clustering techniques are applied to analyse flow-based data. To do so, two dif-
ferent alternatives are considered: clustering on original (flow) data and clustering on projected (reduced to 3 dimensions by 
CMLHL) data. This section describes the dataset used for evaluating these alternatives, the experimental settings and the 
obtained results.  

4.1   Dataset 
The analysed dataset contains flow-based information (14.2 M flows) from traffic collected by the University of Twente [8] 
using a honeypot in September 2008. A honeypot can be defined as an “environment where vulnerabilities have been delib-
erately introduced to observe attacks and intrusions” [30]. The honeypot was installed on a virtual machine directly connect-
ed to the Internet (ensuring traffic to be realistic) and ran several typical network services, such as: 
• ssh: the OpenSSH service running on Debian was patched to track active hacking activities by logging sessions: for each 

login, the transcript (user typed commands) and the timing of the session was recorded. 
• Apache web server: a simple webpage with a login form.  
• ftp: proftp that uses the auth/ident service was chosen for additional authentication information about incoming connections. 

The monitoring window comprised both working days and weekend days. The data collection resulted in a 24 GB dump 
file containing 155.2 M packets. Among the services, the most often contacted ones are ssh and http. The majority of the 
attacks targeted the ssh service and they can be divided into two categories: the automated and the manual ones. The first 
ones are well-known automated brute force scans, where a program enumerates usernames and passwords from large dic-
tionary files. This attack is particularly easy to observe at flow level, since it generates a new flow for each connection. 
Attacks of the second type are manual connection attempts, amounting to 28 in the trace and 20 of them succeed.  

The http alerts labelled in the data set are automated attacks that try to compromise the service by executing a scripted se-
ries of connections. No manual http attacks are present in the dataset. The types of flows labelled on the database are: 
ssh_scan, ssh_conn, ftp_scan, ftp_conn, http_scan, http_conn, authident_sideeffect, irc_sideeffect, icmp_sideeffect. 
Regarding the ftp traffic, the data set contains only 6 connections to this service on the honeypot, during which an ftp session 
has been opened and immediately closed. 

Original data have been split in different overlapping segments, as MOVICAB-IDS usually do with network traffic (see 
Section 2). As a result, several segments obtained from this dataset have been generated and analysed. Every segment con-
tains all the flows whose timestamp is between the segment initial and final time limit. Segment length is stated as 782 sec-
onds to cover the whole database, whose length is 539,520 seconds (from the beginning of the first flow to the end of the last 
one), that results in 709 segments. As defined for MOVICAB-IDS, there is a slight time overlap of 10 seconds between each 
pair of consecutive segments.  

Seven out of the 709 generated segments have been chosen for present study. The selection of the segments was made by 
taking into account the minimum number of flows present with a specific number of types of data (attacks) in the segment, 
trying to cover all types of attacks included in the dataset. As a result, the segments described in table 1 were selected.  

Table 1. Analysed segments from the “University of Twente” dataset. 

# Segment # Attack Types Attack Types # Flows 
59 2 ssh_conn and irc_sideeffect 1,215 

545 2 ssh_conn and http_conn 731 
30 3 ssh_conn, ftp_conn and irc_sideeffect 12,172 
58 3 ssh_conn, http_conn and irc_sideeffect 1,213 
1 3 ssh_conn, irc_sideeffect and icmp_sideeffect 38,806 

107 4 ssh_conn, authident_ sideeffect, irc_sideeffect and icmp_sideeffect 19,061 
131 4 ssh_conn, http_conn, irc_sideeffect and icmp_sideeffect 122,274 

 



In the case of segment 131, only results of k-means clustering algorithm could be obtained due to the large amount of 
memory that agglomerative clustering require over segments with such amount of data. Although there were some other 
segments including four types of attacks, those segments were not selected as they include a greater number of flows pre-
venting them to be analysed by agglomerative clustering in present study. 

 
For each one of the flows in the above described segments, the following fourteen features were extracted: 

• id: the ID of the flow. 
• src_ip: anonymized source IP address (encoded as 32-bit number). 
• dst_ip: anonymized destination IP address (encoded as 32-bit number). 
• packets: number of packets in the flow. 
• octets: number of bytes in the flow. 
• start_time: UNIX start time (number of seconds). 
• start_msec: start time (milliseconds part). 
• end_time: UNIX end time (number of seconds). 
• end_msec: end time (milliseconds part). 
• src_port: source port number. 
• dst_port: destination port number. 
• tcp_flags: TCP flags obtained by ORing the TCP flags field of all packets of the flow. 
• prot: IP protocol number. 
• type: alert type. 

Two of the above listed features are not provided to the models: the first one (added to identify each single flow) and the 
last one (alert type). 

 This set of features has been processed in order to summarize the four features related to time (start_time, start_msec, 
end_time, and end_msec), being joined in only one feature, named as flow_length. By doing so, new datasets have been 
generated, comprising 9 features. The analysis has been done in both data (14 features and 9 features) for segments 59 an 
545. All the data sets (detailed time information vs. flow length) have been studied but, as the results are pretty similar, only 
those for the 9 features data sets are shown in present paper, and the subsequent analysis for the rest of the segments has 
been done only on the 9-features processed data sets. 

4.2   Results 
The best results obtained by applying the previously introduced techniques to the described datasets are shown in the follow-
ing subsections. The results are projected through CMLHL and further information about the clustering results is added to 
the projections, mainly by the glyph metaphor (different colours and symbols). The figures comprise a legend that states the 
colour and symbol used to depict each flow, according to the original data type (attack). Tables 3, 5, 7, and 9 show results 
obtained by applying k-means to different segments. In these tables, the “Replicates” column shows the number of times the 
clustering was repeated using new initial cluster centroid positions, and “Sum of Distances” shows the local minimum solu-
tion after all iterations on each replication. As the honeypot is designed to only capture “unexpected” traffic, it can be as-
sumed that most of the recorded traffic is at least suspicious. As the majority of the attacks targeted the ssh service (ssh_conn 
type), for the comparison of clustering techniques it has been used as the base type of attack to show the clustering results. 
Tables below show the percentage of ssh_conn flows that are assigned to the same cluster (SSH_C) and the percentage of 
flows from other types that are assigned to a cluster containing ssh_conn flows (SSH_W). As previously mentioned, the 
results for the original segments 59 and 545 are very similar so, the subsequent analysis of the selected segments has been 
only applied to the (flow length) segments. 

Apart from clustering results, visualizations from the analysis of the seven segments by applying both clustering tech-
niques (k-means and agglomerative clustering) over the original (flow length) segment, together with the projection of the 
same segment obtained by CMLHL are shown below. In the case of the visualization of k-means results on original data 
(Figures 2.b, 4.b, 6.b and 8.b), only the two first dimensions of the data are depicted in order to easily obtain a 2D visualiza-
tion of the flows. 

Results on Cluster Evaluation 
As an initial experiment, cluster evaluation has been applied to estimate the optimal number of cluster for k-means by us-

ing Calinski-Harabasz, Silhouette and Gap criteria. Both original (9 features) and projected (by CMLHL) segments have 
been studied by setting 10 as the maximum k value; it is high enough as the number of  different attack types ranges from 2 
to 4. Results are shown in Table 2, including the k value estimated for original data (k-od) and for projected data (k-pd). 

Table 2. Cluster evaluation results by using different criteria. 

# Segment # Attack Types 
Calinski-Harabasz Silhouette Gap 

k-od k-pd k-od k-pd k-od k-pd 
59 2 10 9 8 2 10 10 

545 2 10 10 4 2 10 10 
30 3 10 5 10 5 10 10 
58 3 10 8 10 2 10 9 
1 3 10 9 10 10 10 10 

107 4 10 10 10 7 10 10 
131 4 10 9 10 10 - - 



 
From results shown in Table 2, it can be concluded that cluster evaluation on projected data obtains equal or lower (in 

most cases) optimal values of k than original data for all the criteria. As these values are closer to the number of attacks in 
the dataset than those obtained on original data (10 in all cases for Calinski-Harabasz and Gap criteria), it supports one of the 
main ideas of present study: intrusion analysis on neural projected data could outperform the analysis on original data. The 
Silhouette criterion is the only one suggesting a k value smaller than 10 for the segments with the minimum number of at-
tacks (50 and 545). This criterion is the only one that, for these same segments (projected data), suggests a k value similar to 
the number of attack types. At the same time, there is only case (Silhouette criterion, segment 58 and projected data) where 
the suggested value of k is smaller than the number of attack types. The missing values for segment 131 and Gap criterion 
are due to the large amount of data present on this segment which prevented from completing such experiments.  

After cluster evaluation, agglomerative techniques were applied to the seven selected datasets. For the sake of brevity, on-
ly results for some of the following segments are shown: 
• Segment 545: selected as a representative of the segments comprising 2 types of attacks due to its reduced size (it is the 

smallest analysed segment). 
• Segment 30: selected as a representative of the segments comprising 3 types of attacks due to the presence of attack type 

ftp_conn, that is not present in any other of the analysed segments. 
• Segments 107 and 131: these are the segments comprising 4 types of attacks. As only k-means results are shown for seg-

ment 131 (biggest analysed segment), results on segment 107 are also shown to compare the different clustering techniques. 
 

Results on Segment 545 
Table. 3 shows the clustering results obtained by k-means on segment 545 (both projected and original), as well as the dif-
ferent values of parameters. 

Table 3. k-means results on segment 545.  

Data k Distance Criteria SSH_C SSH_W Replicates/ 
Iterations 

Sum of Distances 

Projected 2 sqEuclidean 42.4863 % 0 % 5/12 1710.13 
Original 2 sqEuclidean 49.1803 % 0.8197 % 5/2 3.65729E+17 
Projected 4 sqEuclidean 15.9836 % 0 % 5/21 854.837 
Original 4 sqEuclidean 0 % 0 % 5/3 3.88519E+10 
Projected 6 sqEuclidean 0 % 0 % 5/20 121.144 
Original 6 sqEuclidean 0 % 0 % 5/12 1.13974E+10 
Projected 2 Cityblock 46.7213 % 0 % 5/8 814.403 
Original 2 Cityblock 49.1803 % 0.8197 % 5/2 2.11713E+09 
Projected 4 Cityblock 11.7486 % 0 % 5/21 593.5 
Original 4 Cityblock 22.2678 % 0 % 5/14 1.05984E+09 
Projected 6 Cityblock 0 % 0 % 5/16 402.065 
Original 6 Cityblock 10.5191 % 0 % 5/12 1.0584E+09 
Projected 2 Cosine 51.3661 % 0 % 5/9 1.37952 
Original 2 Cosine 49.1803 % 0.8197 % 5/2 0.00345234 
Projected 4 Cosine 25.1366 % 0 % 5/36 0.259027 
Original 4 Cosine 0 % 0 % 5/3 1.04725E-09 
Projected 6 Cosine 0 % 0 % 5/26 0.105203 
Original 6 Cosine 0 % 0 % 5/12 3.07186E-10 
Projected 2 Correlation 55.6011 % 0 % 5/8 53.3814 
Original 2 Correlation 49.1803 % 0.8197 % 5/2 0.00437153 
Projected 4 Correlation 24.8634 % 0 % 5/12 19.5017 
Original 4 Correlation 0 % 0 % 5/3 1.14901E-09 
Projected 6 Correlation 17.4863 % 0 % 5/27 13.6746 
Original 6 Correlation 0 % 0 % 5/10 3.36364E-10 

 
As a complementary result, Fig. 2 shows one of the experiments from Table 3, both projected (Fig. 2.a) and original (Fig. 

2.b) data for k=6 and cityblok distance criterion. The data has been labelled as follows, according to the type of attack: 
ssh_conn flows (Cat. 2) and http_conn (Cat. 6).. 



Fig. 2. Visualization of k-means results on segment 545 (k=6 and cityblock distance). 

2.a k-means on projected data. 2.b k-means on original data. 
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In the case of the results shown in Fig. 2, clustering on original data obtained a non-zero (but low) SSH_C Rate value, 

while projected data obtained no error. For the ssh_conn flows on projected data (Cat. 2 in Fig. 2.a), the clustering technique 
groups data with no errors, even though the number of clusters (k parameter) is higher than the number of attack types, hence 
some clusters group only data from the same category. Additionally, the Sum of Distances is lower for the projected data, as 
the dimensionality of the data has been previously reduced through CMLHL. 

The experiments results (with no error) obtained by the agglomerative method on the same segment (545) are shown in 
Table 4. 

Table 4. Agglomerative clustering results on segment 545. 

Data Distance Linkage Cutoff # Clusters SSH_C 
Projected Euclidean Single 8 3 0 % 
Projected sEuclidean Complete 8 3 0 % 
Projected Cityblock Average 12 3 0 % 
Projected Minkowski p=3 Weighted 8 3 0 % 
Projected Chebychev Single 5 3 0 % 
Projected Mahalanobis Single 6 3 0 % 
Projected Cosine Complete 0.08 3 0 % 
Projected Correlation Average 0.05 8 0 % 
Original Euclidean Single 1x108 4 0 % 
Original Cityblock Complete 1x108 4 0 % 
Original Minkowski p=3 Average 1x108 4 0 % 
Original Chebychev Weighted 1x108 4 0 % 
Original Cosine Single 0.0001 4 0 % 
Original Correlation Complete 0.0001 4 0 % 

 
It can be seen that, in the case of projected data, the minimum number of clusters without error is 3, while in the case of 

original data it is 4, with appropriate distance method. In the case of original data, the sEuclidean distance and Mahalanobis 
distance cannot be applied because the maximum recursion level has been reached in the first case, and the covariance ma-
trix cannot be computed in the second case. 

Results of one of the best experiments from Table 4 are depicted in Fig. 3, including segment visualization and the asso-
ciated dendrogram on projected data. The parameters of the shown result are: sEuclidean distance, Complete linkage, cutoff: 
8 and 3 groups with no clustering error. 



Fig. 3. Visualization of best results by agglomerative clustering on segment 545. 

3.a Agglomerative clustering on projected data. 3.b Corresponding dendrogram. 
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Results on Segment 30 
Table. 5 shows the clustering results obtained by k-means on segment 30 (both projected and original), as well as the differ-
ent values of parameters. 

Table 5. k-means results on segment 30.  

Data k Distance Criteria SSH_C SSH_W Replicates/ 
Iterations 

Sum of Dis-
tances 

Projected 3 sqEuclidean 74.1358 % 0.0164 % 5/33 20480 
Original 3 sqEuclidean 49.7414 % 0.1642 % 5/3 5.66802E+019 
Projected 6 sqEuclidean 14.4922 % 0 % 5/39 10625.4 
Original 6 sqEuclidean 49.7414 % 0 % 5/6 1.15164E+018 
Projected 9 sqEuclidean 16.9308 % 0 % 5/33 7869.1 
Original 9 sqEuclidean 0 % 0 % 5/7 7.6726E+016 
Projected 3 Cityblock 45.3650 % 0.0246 % 5/12 18742.9 
Original 3 Cityblock 65.4816 % 0 % 5/3 7.76029E+010 
Projected 6 Cityblock 58.0507 % 0 % 5/25 13362.4 
Original 6 Cityblock 31.4722 % 0 % 5/5 7.74968E+010 
Projected 9 Cityblock 23.7786 % 0 % 5/31 11649.4 
Original 9 Cityblock 20.3712 % 0 % 5/6 7.74823E+010 
Projected 3 Cosine 77.2888 % 0 % 5/17 44.6866 
Original 3 Cosine 49.7496 % 0.1642 % 5/3 0.627461 
Projected 6 Cosine 26.8906 % 0 % 5/20 21.194 
Original 6 Cosine 49.7414 % 0 % 5/5 0.00966831 
Projected 9 Cosine 14.3033 % 0 % 5/37 15.1101 
Original 9 Cosine 0 % 0 % 5/5 0.00069063 
Projected 3 Correlation 63.6259 % 0 % 5/10 49.0796 
Original 3 Correlation 49.7414 % 0.1642 % 5/3 0.747774 
Projected 6 Correlation 52.3195 % 0 % 5/35 25.0537 
Original 6 Correlation 0 % 0 % 5/3 0.000873173 
Projected 9 Correlation 35.6269 % 0 % 5/44 10.158 
Original 9 Correlation 0 % 0 % 5/4 0.000873149 

 
As a complementary result, Fig. 4 shows one of the experiments from Table 5, both projected (Fig. 4.a) and original (Fig. 

4.b) data for k=6 and sqEuclidean distance criterion. The data has been labelled as follows: ssh_conn flows (Cat. 2), 
ftp_conn (Cat. 4) and irc_sideeffect (Cat. 8). 



Fig. 4. Visualization of k-means results on segment 30 (k=6 and sqEuclidean distance). 

4.a k-means on projected data. 4.b k-means on original data. 
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Clustering on both original and projected data obtained a non-zero SSH_C Rate value, being lower in the case of project-

ed data. For the ssh_conn flows on projected data (Cat. 2 in Fig. 4.a), the clustering technique distributed them in all clusters, 
even though the number of clusters (k parameter) is higher than the number of categories, hence it can be concluded that this 
clustering technique may not be appropriate for this type of data. 

The experiments results obtained by the agglomerative method on the same segment (30) are shown in Table 6. 

Table 6. Agglomerative clustering results on segment 30. 

 
Data Distance Linkage Cutoff Cluster SSH_C 

Projected Euclidean Complete 9 4 0.1560 % 
Projected sEuclidean Average 6 3 0.1806 % 
Projected Cityblock Complete 12 3 0.1971 % 
Projected Minkowski p=3 Weighted 5 3 0.1806 % 
Projected Chebychev Average 5 3 0.0985 % 
Projected Mahalanobis Average 6 3 0.1067 % 
Projected Cosine Average 0.1 5 0.1067 % 
Original Euclidean Single 1.5x108 6 0 % 
Original Cityblock Complete 1.5x108 6 0 % 
Original Minkowski p=3 Average 1.5x108 6 0 % 
Original Chebychev Weighted 1.5x108 6 0 % 
Original Cosine Single 0.0001 6 0 % 
Original Correlation Complete 0.0001 6 0 % 

 
It can be seen that, in the case of projected data, the minimum number of clusters is 3 (with a very low SSH_C rate) while 

in the case of original data it is 6, with appropriate distance method. In the case of original data, the sEuclidean and Ma-
halanobis distances cannot be applied because the maximum recursion level has been reached in the first case, and the covar-
iance matrix cannot be computed in the second case. 

Results of one of the best experiments from Table 6 are depicted in Fig. 5, including segment visualization and the asso-
ciated dendrogram on projected data. The parameters of the shown result are: Chebychev distance, Average linkage, cutoff: 
5 and 3 groups with an SSH_C rate of 0.0985 %. 



Fig. 5. Visualization of best results by agglomerative clustering on segment 30. 

5.a Agglomerative clustering on projected data. 5.b Corresponding dendrogram. 
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Results on Segment 107 
Table 7 shows the clustering results obtained by k-means on segment 107 (both projected and original data), as well as the 
different values of parameters. 

Table 7. k-means results on segment 107.  

Data k Distance Criteria SSH_C SSH_W Replicates/ 
Iterations 

Sum of Distances 

Projected 4 sqEuclidean 8.3255 % 0.4617 % 5/5 6611.9 
Original 4 sqEuclidean 98.7777 % 0 % 5/4 2.28156E+019 
Projected 6 sqEuclidean 0.0210 % 0 % 5/11 1697.64 
Original 6 sqEuclidean 6.7044 % 0.2308 % 5/5 3.49696E+019 
Projected 8 sqEuclidean 0.0210 % 0 % 5/20 1262.85 
Original 8 sqEuclidean 49.2655 % 0 % 5/15 3.49696E+019 
Projected 4 Cityblock 52.7594 % 0 % 5/10 3807.32 
Original 4 Cityblock 37.3308 % 0.0787 % 5/26 8.99686E+010 
Projected 6 Cityblock 47.8858 % 0 % 5/40 5543.52 
Original 6 Cityblock 55.8021 % 0 % 5/32 8.99597E+010 
Projected 8 Cityblock 34.1412 % 0 % 5/27 5456.32 
Original 8 Cityblock 52.5496 % 0 % 5/32 7.07776E+010 
Projected 4 Cosine 8.3202 % 0.4617 % 5/10 1.24694 
Original 4 Cosine 6.7149 % 0.2308 % 5/5 1.06286 
Projected 6 Cosine 8.3202 % 0 % 5/24 1.19717 
Original 6 Cosine 6.7149 % 0 % 5/11 1.06286 
Projected 8 Cosine 8.3202 % 0 % 5/43 1.19585 
Original 8 Cosine 6.7149 % 0 % 5/16 1.06286 
Projected 4 Correlation 8.3097 % 0.3095 % 5/8 4.94807 
Original 4 Correlation 6.7149 % 0.2308 % 5/4 1.27183 
Projected 6 Correlation 13.2567 % 0 % 5/25 138.004 
Original 6 Correlation 6.7149 % 0 % 5/10 1.27183 
Projected 8 Correlation 13.2514 % 0 % 5/ 27 4.82337 
Original 8 Correlation 6.7149 % 0 % 5/17 1.27183 

 
As a complementary result, Fig. 6 shows one of the experiments from Table 7, both projected (Fig. 6.a) and original (Fig. 

6.b) data for k=6 and sqEuclidean distance criterion. The data has been labelled as follows: ssh_conn flows (Cat. 2), authi-
dent_sideeffect (Cat. 7), irc_sideeffect (Cat. 8) and icmp_sideeffect (Cat. 9). 



Fig. 6. Visualization of k-means results on segment 107 (k=6 and sqEuclidean distance). 

6.a k-means on projected data. 6.b k-means on original data. 
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Although very low, clustering on original data obtained a non-zero SSH_C and SSH_W rates, while clustering on pro-

jected data obtained a zero SSH_W Rate and lower SSH_C rate. For the ssh_conn flows on projected data (Cat. 2 in Fig. 
6.a), the clustering technique groups data with some of the flows from Cat. 8. This clustering technique groups Cat. 7 and 
Cat. 9 in different clusters. 

The experiments results obtained by the agglomerative method on the same segment (107) are shown in Table 8. 

Table 8. Agglomerative clustering results on segment 107. 

 
Data Distance Linkage Cutoff Cluster SSH_C 

Projected Euclidean Average 2 13 0.0052 % 
Projected sEuclidean Weighted 2 13 0.0052 % 
Projected Cityblock Complete 4 13 0.0052 % 
Projected Minkowski p=3 Weighted 2 12 0.0052 % 
Projected Chebychev Single 0.5 17 0 % 
Projected Mahalanobis Average 2 13 0.0052 % 
Projected Cosine Average 0.0005 16 0 % 
Projected Correlation Single 0.0001 14 0.0105 % 
Original Euclidean Single 30000 16 6.6939 % 
Original Cityblock Complete 80000 16 6.6939 % 
Original Minkowski p=3 Average 40000 16 6.6939 % 
Original Chebychev Single 30000 16 6.6939 % 
Original Cosine Weighted 1x10-10 18 6.6939 % 
Original Correlation Complete 1x10-10 6 6.6939 % 

 
From Table 8, it can be seen that in the case of projected data, the minimum number of clusters without error is 16 (it can 

be reduced to 12 clusters accepting a non-zero but very low SSH_C Rate), while in the case of original data it is 6 (with a 
higher SSH_C Rate), with appropriate distance method. Hence agglomerative clustering on projected data obtains better 
results. In the case of original data, the sEuclidean and Mahalanobis distances cannot be applied because the maximum 
recursion level has been reached in the first case, and the covariance matrix cannot be computed in the second case. 

Results of one of the best experiments from Table 8 are depicted in Fig. 7, including segment visualization and the asso-
ciated dendrogram on projected data. The parameters of the shown result are: Chebychev distance, Single linkage, cutoff: 0.5 
and 17 groups with no clustering error. 



Fig. 7. Visualization of best results by agglomerative clustering on segment 107. 

7.a Agglomerative clustering on projected data. 7.b Corresponding dendrogram. 
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Results on Segment 131 
Table 9 shows the clustering results obtained by k-means on segment 131 (both projected and original), as well as the differ-
ent values of parameters. 

Table 9. k-means results on segment 131.  

Data k Distance Criteria SSH_C SSH_W Replicates/ 
Iterations 

Sum of Distances 

Projected 4 sqEuclidean 72.2797 % 0.0237 % 5/27 143881 
Original 4 sqEuclidean 35.3580 % 0.0147 % 5/3 3.3944E+019 
Projected 6 sqEuclidean 65.3593 % 0 % 5/29 94148.9 
Original 6 sqEuclidean 18.2425 % 0 % 5/3 3.33533E+019 
Projected 8 sqEuclidean 35.3425 % 0 % 5/21 57594 
Original 8 sqEuclidean 17.1270 % 0 % 5/3 3.27634E+019 
Projected 4 Cityblock 62.4323 % 0.0188 % 5/19 155608 
Original 4 Cityblock 53.6005 % 0 % 5/3 8.50048E+011 
Projected 6 Cityblock 64.6346 % 0 % 5/26 127850 
Original 6 Cityblock 53.6005 % 0 % 5/10 8.49582E+011 
Projected 8 Cityblock 44.2167 % 0 % 5/24 99653.2 
Original 8 Cityblock 41.4321 % 0 % 5/13 8.44494E+011 
Projected 4 Cosine 60.8088 % 0.1677 % 5/27 224.305 
Original 4 Cosine 35.3580 % 0.0147 % 5/4 0.851133 
Projected 6 Cosine 75.4176 % 0.0303 % 5/39 146.051 
Original 6 Cosine 35.3580 % 0.0147 % 5/4 0.0121125 
Projected 8 Cosine 75.6695 % 0.0213 % 5/32 107.85 
Original 8 Cosine 35.3580 % 0 % 5/5 0.00636469 
Projected 4 Correlation 60.1929 % 0.2053 % 5/24 43.4839 
Original 4 Correlation 35.3580 % 0.0237 % 5/4 1.02209 
Projected 6 Correlation 84.7884 % 0.0163 % 5/38 21.5802 
Original 6 Correlation 35.3580 % 0.0147 % 5/4 0.0153503 
Projected 8 Correlation 85.3673 % 0.0106 % 5/67 13.2321 
Original 8 Correlation 35.3580 % 0 % 5/4 0.00806508 

 
As a complementary result, Fig. 8 shows one of the experiments from Table 9, both projected (Fig. 8.a) and original (Fig. 

8.b) data for k=4 and sqEuclidean distance criterion. The data has been labelled as follows: ssh_conn flows (Cat. 2), 
http_conn (Cat. 6), irc_sideeffect (Cat. 8) and icmp_sideeffect (Cat. 9). 



Fig. 8. Visualization of k-means results on segment 131 (k=4 and sqEuclidean distance). 

8.a k-means on projected data.    8.b k-means on original data. 
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Both experiments obtained a non-zero SSH_C and SSH_W rates. Experiments for the agglomerative method on segment 

131 could not be completed due to the high amount of data contained in this segment. 

5 Conclusions and Future Work 
A clustering extension of MOVICAB-IDS has been proposed and applied to real-life flow-based in present paper. Descrip-
tive details about the performed experiments on the different datasets and with several different clustering techniques and 
criteria can be found in section 3. Experimental results show that some of the applied clustering methods obtain a good 
clustering performance on the analysed data, comprising many different types of attacks. The obtained results vary from the 
different segments and the behaviour of the applied clustering techniques. These results are consistent with those previously 
obtained for packet-based data [6, 7]. 

There is not a distance criterion which obtains the best results, hence its selection depends on the analysed data. Compar-
ing projected data results with the ones from original data, it can be said that better results (fewer number of groups with no 
errors) are obtained when processing projected data. 

From the experimental results shown, it can be concluded that clustering methods could help in intrusion detection over 
flow-based network data. On the other hand, using clustering techniques, automatic response could be added to MOVICAB-
IDS, to quickly abort intrusive actions while happening. 

Future work will focus on extending the experimental setup to cover some different clustering techniques, as well as 
some other data sources to increase the detection rate and diversity of the proposed IDS. It would be interesting to test the 
proposed extension on data comprising both anomalous and legitimate traffic once a dataset containing such traffic is public-
ly available and accommodates to MOVICAB-IDS. 
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